If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2+18y-14=0
a = 4; b = 18; c = -14;
Δ = b2-4ac
Δ = 182-4·4·(-14)
Δ = 548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{548}=\sqrt{4*137}=\sqrt{4}*\sqrt{137}=2\sqrt{137}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{137}}{2*4}=\frac{-18-2\sqrt{137}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{137}}{2*4}=\frac{-18+2\sqrt{137}}{8} $
| {3}{5}+{5}{3}x={5}{3}+{3}{5}x | | 1/7y+6=-6/7y | | -8x+4+4x=20 | | 2=1/6(-12x+6) | | x+24-16=32 | | 4a+5+2a-3=2 | | 5=−0.006x^2+1.25x+15 | | 3/5=x-4/x+3 | | 2/3z+9=-1/3z | | 18×y=90 | | 3.2a/4+6=7.32 | | 6(a+1)=168 | | 5x-2(3x+4)=3x-32 | | x+2x+3x+4x=50+75+100 | | 189-6c=16c | | x-0.15x=512 | | (5/13)x=36 | | 7+4x=13x | | -9n−10=-10n | | -9z−10=-10z | | 2r=3r+6 | | -8p=-9p+8 | | (5n-17)+(n+12)+(171-5n)=180 | | (2/5)*x-3=3/2*(4x-3) | | 2/5*x-3=3/2(4x-3) | | (37b-9)-9(4b+4)=-3 | | 27(x)-(3(x)-9)=3(x+10) | | 2y-5.5=-61/2 | | 7.5-8.5(1-9.5z)=28 | | -4r-27-6r=0 | | n=5n-17 | | −x−4.2=1.2+2x |